Presenter Bios

in alphabetical order

a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z

Dr. Ritesh Agarwal
Professor of Material Science and Engineering
University of Pennsylvania

Ritesh is developing techniques for the rational synthesis of functional nanostructural materials for applications in nanophotonic and electronic devices. His interests extend across several frontiers of science and engineering, including growth of self-assembled nanostructures, nanoscale physical behavior, and hierarchical assembly of nanostructures into integrated nanosystems. Ritesh’s work includes projects with semiconductor nanowire heterostructures, interfacial phenomena, and phase-transitions at the nanoscale, and has led to the demonstration of nanowire-based injection lasers, avalanche photodiodes and phase-change electronic memory.

Dr. Mark G. Allenmark-allen
Scientific Director, Singh Center for Nanotechnology
Alfred Fitler Moore Professor
Electrical and Systems Engineering
Mechanical Engineering and Applied Mechanics
University of Pennsylvania

Mark G. Allen received the B.A. degree in chemistry, the B.S.E. degree in chemical engineering, and the B.S.E. degree in electrical engineering from the University of Pennsylvania, Philadelphia, and the S.M. and Ph.D. (1989) degrees from Massachusetts Institute of Technology, Cambridge. In 1989 he joined the faculty of the School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, ultimately holding the rank of Regents’ Professor and the J.M. Pettit Professorship in Microelectronics, as well as a joint appointment in the School of Chemical and Biomolecular Engineering. While at Georgia Tech, he held several additional positions, including Senior Vice Provost for Research, Director of the Georgia Electronic Design Center, and Executive Director of the Institute for Electronics and Nanotechnology. In 2013 he left Georgia Tech to become the Alfred Fitler Moore Professor of Electrical and Systems Engineering and Scientific Director of the Singh Nanotechnology Center at the University of Pennsylvania in Philadelphia, PA. His research interests are in the development and the application of new micro- and nanofabrication technologies, as well as MEMS. Dr. Allen was Editor-in-Chief of the Journal of Micromechanics and Microengineering, was a previous co-chair of the IEEE/ASME MEMS Conference and the PowerMEMS Conference. He has co-founded multiple companies based on micro and nanotechnology, including CardioMEMS, Inc., and Axion Biosystems. He is a Fellow of the IEEE.

Dr. Ibraheem Badejo
Senior Director, New Ventures, Johnson & Johnson Innovation

Ibraheem (Ib) is Senior Director, New Ventures at Johnson & Johnson Innovation, Boston. He leverages his expertise in smart materials and biomaterials to support the medical device sector. From 2010 to 2013, Ib was a Research Fellow at Global Surgery Group of Johnson & Johnson, where he was responsible for external and front-end innovations and intellectual property for Ethicon Biosurgery. From 2006 to 2010, he was the Director of Applied Research & New Technology Assessment of novel biomaterials. Prior to that, he was the Chief Scientist of Closure Medical Corp (acquired by J&J in 2005). Prior to joining Closure, he held various positions at Bayer, North Carolina State University, College of Charleston. He currently serves as an Adjunct Professor of Biomedical Engineering at Drexel University. During his career, Ib has led teams in the development of commercialized biomaterials based products and new technology / products licensed or acquired. Ib received his BA degree in chemistry from Avila University. He received his PhD in Organic chemistry from the University of Toledo, where he was the Robert Whiteford Memorial Scholar for Outstanding Graduate Research and a Petroleum Research Fund Fellow. He is also the recipient of 24 US patents with others pending.


Steven Baxter, Ph.D.
R&D Director, Fluoropolymers
Arkema, Inc.

Steven Baxter is currently R&D Director for Fluoropolymers at Arkema Inc. with main responsibility for new product development.  Arkema is the global leader in the production of vinylidene fluoride polymers and copolymers which are used in a number of diverse applications including architectural coatings, water purification membranes, oil & gas production, and Li-ion batteries.  Prior to joining Arkema in 2013, he held various positions in R&D leadership at the Dow Chemical Company and Rohm and Haas Company for ion exchange resins and acrylic polymer synthesis.  He holds a B.S. degree in Chemistry from the California Institute of Technology, M.S. and Ph.D. degrees in Inorganic Chemistry from Cornell University, and was a National Institutes of Health Postdoctoral Fellow at the University of North Carolina at Chapel Hill.


Dr. Igor Bargatin
Class of 1965 Term Assistant Professor
Mechanical Engineering and Applied Mechanics (MEAM)
University of Pennsylvania

Igor Bargatin received the B.S. degree in theoretical physics from the Lomonosov Moscow State University, and the Ph.D. degree in physics and electrical engineering from the California Institute of Technology, Pasadena. After postdoctoral appointments at LETI/Minatec (Grenoble, France) and Stanford University, he became the Class of 1965 Term Assistant Professor in the Department of Mechanical Engineering and Applied Mechanics (MEAM), University of Pennsylvania. Prof.Bargatin’s research interests are focused on micro- and nanomechanical structures for new applications in energy conversion and fabrication of ultra-lightweight materials.


Dr. Laurence C. Bray
Associate Chair
Assistant Professor
Bioengineer Department
George Mason University

Dr. Laurence Bray is the Associate Chair of the Department of Bioengineering at George Mason University. She is responsible for overseeing a wide range of the department’s educational and research activities. Some recent activities involve chairing the Mason Faculty and Curricular Activities Committee and leading a Multi-disciplinary Senior Design Initiative from a project idea to a marketable device. One example is designing a wearable technology using graphene traces for autism spectrum disorders in children. Laurence also serves as the liaison to the department’s clinical partnership with the INOVA Health System, as well as other external partners, such as biotech companies, government agencies, and other academic institutions. Prior to joining Mason, Laurence was a postdoctoral fellow in the Department of Computer Science and Engineering in the Brain Laboratory at the University of Nevada, where she earned her PhD in Biomedical and Electrical Engineering. She graduated with her MS and BS degrees in Bioengineering and Biological Sciences, respectively from Clemson University.


Ms. Daphney Chery
Ph.D. Student
Drexel University

Daphney Chery obtained her MS degree from the University of Medicine and Dentistry of New Jersey in 2012 and is currently completing her PhD degree at the School of Biomedical Engineering, Science and Health Systems at Drexel University. Her research focuses on investigating the role of decorin in the mechanical and structural properties of the pericellular matrix (PCM) of cartilage during maturation and during OA progression. By combining film-assisted cryo-sectioning, immunofluorescent imaging, and atomic force microscopy, she developed a new method to directly measure the mechanical properties of murine knee cartilage PCM and examine the impacts of decorin deficiency on the PCM mechanical properties. Daphney’s recent work has also been accepted as podium presentations in various conferences such as the Orthopaedics Research Society, American Physical Society and the Summer Biomechanics, Bioengineering and Biotransport Conference.


Dr. Eric Detsi
Stephenson Term Chair Assistant Professor
Materials Science and Engineering (MSE)
University of Pennsylvania

Eric’s primary research interests involve the novel design and synthesis of metal-based 3D nanostructured materials with enhanced properties for structural and functional applications. His approach is to apply the natural sciences, primarily physics and chemistry, to solve engineering problems. In particular, Eric exploits the crystal structure of multiphase non-precious metal alloys to engineer nanoporous materials with hierarchical porosity after selective leaching. Hierarchical porous structures are attractive as alloy-type anode materials in alkali and alkaline-earth metals batteries, because the macropores (50-1000 nm) are needed for long range electrolyte diffusion through the material, while the mesopores (2-50 nm) and micropores (< 2 nm) are needed to create high-surface area and short diffusion paths for alkali or alkaline-earth metals. More importantly, micro and mesopores are needed to accommodate the large volume changes taking place in high-capacity alloy-type battery anodes during their alloying reactions with alkali or alkaline-earth metals. Eric also takes advantage of state-of-the-art thin film deposition techniques such as plasma-enhanced atomic layer deposition, combined with his expertise in top-down nanofabrication by selective leaching, to engineer novel 3D nanocomposites for critical energy applications.


Brian DiPaolo, Ph.D.
Principle Investigator, Halo Labs

Brian earned his BS and MS in Biomedical Engineering at Drexel University. He went on to earn his Ph.D. in Bioengineering at the University of Pennsylvania in the field of cellular biomechanics and signaling. He joined the Halo Labs team shortly thereafter. His primary responsibilities have included conceptualization, engineering, design, and analysis of the recently launched HORIZON research instrument.



Dr. David M. Eckmann, Ph.D., M.D.
Horatio C. Wood Professor of Anesthesiology and Critical Care
Professor of Bioengineering
Institute for Medicine and Engineering,
Cardiovascular Institute and
Institute for Translational Medicine and Therapeutics
University of Pennsylvania

David M. Eckmann, PhD, MD, is the Horatio C. Wood Professor of Anesthesiology and Critical Care and Professor of Biomedical Engineering. Dr. Eckmann is American Board of Anesthesiology certified with expertise in biofluid dynamics and cardiopulmonary physiology. His research focus includes experimental and computational research techniques in i) targeted drug delivery, including development of nanoparticles for vascular targeting; ii) thin film surface coatings for biocompatibility of biomaterials as well as drug elution and antimicrobial protection; and iii) the interrelationship between cell mechanics and cellular bioenergetics. As a PI Dr. Eckmann has been continuously funded by NIH for over 20 years and has also received multiple grants from NSF, Department of Defense, Office of Naval Research and NASA. Dr. Eckmann received his BS in Bioengineering from the University of California, San Diego, and his MD as well as his PhD in Bioengineering from Northwestern University.


Mark Edmundson
Senior Technologist at W.L. Gore & Associates

Mark Edmundson received a Bachelor of Chemical Engineering from the University of Delaware and is currently enrolled in the Nanotechnology Masters Program at the University of Pennsylvania. He also works full-time as a Senior Technologist at W.L. Gore & Associates, where he is leading a research and development initiative related to nanomaterials. His primary research interests include colloids; coating and drying of thin liquid films; wetting complex, low-energy surfaces; and a variety of end-use applications including implantable medical devices, mobile electronics, and consumer fabrics. He has worked extensively in electrochemical energy storage and conversion both in the US and internationally, and was a co-organizer of the Polymer Electrolyte Fuel Cells Symposium for the Electrochemical Society from 2010-2015.


Dr. Jeffrey Hettinger
Professor of Physics
Rowan University

Jeffrey Hettinger is a Professor in the Departments of Physics and Astronomy and Molecular and Cellular Biosciences at Rowan University. He earned his doctorate in Physics from Boston University, spent five years working in the Materials Science Division at Argonne National Laboratory. He has been at Rowan for the past 22 years. Much of his work has been geared toward understanding fundamental charge transport in conducting ceramics and dissipation mechanisms in superconductors. His recent research focuses on the development and application of coatings that improve the efficiency and biocompatibility of electrodes for neurostimulation.


Dr. Harman Khare

Harman Khare is the Manager of Research Projects in the Nanotribology Lab of Prof. Robert Carpick, at the Department of Mechanical Engineering and Applied Mechanics. His research is focused on developing an improved understanding of nanoscale friction and wear mechanisms of additives in next-generation, ultra-low viscosity automotive lubricants using in-situ atomic force microscopy (AFM). His broader research interests are in multi-scale mechanics of sliding interfaces, the tribology of lubricant additives, polymer nanocomposites and surface coatings for automotive and aerospace applications, and advanced AFM-based techniques in nanomanufacturing. Prior to joining Penn, Harman was in the Materials Tribology Laboratory at the University of Delaware, where he obtained his PhD in 2014.


Dr. David Lai
Process Engineer at GSK

David Lai completed his Ph.D. in the University of Michigan. His thesis was on automated microfluidic vitrification of human and animal oocytes and zygotes. David also published on microfluidic droplets with aqueous two-phase systems during his Ph.D. and continued his research interest in droplet microfluidics in his PostDoc with microfluidic cell-laden hydrogel particle generation. He now applies microfluidic droplets for pharmaceutical secondary manufacturing with GlaxoSmithKline where he splits his responsibilities between the departments of Advanced Manufacturing Technologies, Product and Process Engineering, and Drug Design and Selection.


John S. Lettow
President, Vorbeck Materials Corp.

John is the president and co-founder of Vorbeck Materials Corp. The company develops specialty electronics for wearable devices, as well as batteries and other components based on a fundamental new material technology – graphene. Customers include leading consumer goods and apparel companies, electronics, and aerospace companies. John has experience in technology development, start-up companies, and consulting with a focus on materials innovations in the electronics and energy industries. John received a Ph.D. in chemical engineering from MIT, an M.Phil. in engineering from the University of Cambridge (UK) as a Fulbright Scholar, a BSE in chemical engineering from Princeton University, and an MBA from the Wharton School, University of Pennsylvania. John serves on the Advisory Board for the Department of Chemical and Biological Engineering at Princeton University, and he has served on the Advisory Board for the Maryland Center for Entrepreneurship.


Chuan-Fu Lin
Assistant Research Scientist
Department of Materials Science and Engineering, University of Maryland, College Park

He received his Ph.D in MSE department from University of Maryland, College Park in 2012 after he finish his MS at National Taiwan University and Institute for Atomic and Molecular Sciences, Academia Sinica, Taiwan in Physics.

He is one of the research members at Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center (DOE-EFRC), focusing on revealing scientific insights and design principles that enable a next-generation electrical energy storage technology based on dense mesoscale architectures of multifunctional nanostructures.

His major accomplishments are on developing atomic layer deposition (ALD) processes of functional materials and solid state electrolytes to solve the materials degradations and interfacial problems in Li-ion, beyond Li-ion batteries and the solid-state batteries systems, and also probe the responding solid-state materials chemistry under the interfacial controls.  He is currently working on developing multi-functional protective coatings for high energy Li-based electrodes, and on developing interfacial engineering and in-situ surface characterization techniques on solid-state systems.


Dr. Somenath Mitra
Distinguished Professor of Chemistry and Environmental Science
New Jersey Institute of Technology

He received his BS in Chemical Engineering from Indian Institute of Technology, MS in Environmental Engineering and PHD in Analytical Chemistry from Southern Illinois University, Carbondale, IL in 1988. He was a National Research Council Fellow at US EPA, Research Triangle Park from 1988 to 1991 before joining NJIT.

His current research focuses on nanotechnology and their applicaiotions in energy and the environment. In the nanotechnology arena his group has worked on novel microwave induced approached for purification and functionalization of nanocarbons such as carbon nanotubes, graphene oxide and nanodiamonds. The group has used nanocarbons and in particular carbon nanotubes in applications such as flexible batteries, solar cells and sea water desalination. His work has been funded by US Army, ONR, US EPA, NSF, NIH, NIEHS, Electric Power Research Institute and US DOE.

He is the coauthor/editor of two books, has over 165 peer reviewed journal publications and over two hundred and fifty conference presentations. He also hold 11 US patents on his research. He is the two time winner of Thomas Elva Edison Patent Award from the State of New Jersey (2009, 2014), Innovator Award from the New Jersey Inventors Hall of Fame (2014), was inducted as a Fellow of the National Academy of Inventors (2016) and the winner of Benedetti Pichler award from the Microchemical Society of America (2017).


Dr. Yuan Tang
Research Assistant Professor, Mechanical Engineering
Temple University

Yuan Tang is a Research Assistant Professor in the Department of Mechanical Engineering at Temple University. He earned his doctorate in Biomedical Engineering from Florida International University. He served as a post-doctoral fellow at Widener University prior to joining Temple University. His current research interests are the development of targeted drug delivery systems utilizing natural or induced inflammatory responses in human endothelium, including the synthesis and characterization of nano-sized drug carriers, drug payload internalization and controlled release. The work conducted by Dr. Yuan Tang is motivated but not restricted by applications in the fields of nanotechnology, molecular imaging, drug delivery and radiation oncology. Dr. Yuan Tang has several publications in high-impact peer-reviewed journals such as Nanomedicine and Pharmaceutical Research.


Ms. Gianna Valentino
Ph.D. Student
Johns Hopkins University

Gianna received her BS in physics from Saint Joseph’s University in 2014. Thereafter, she joined Kevin Hemker’s research group at Johns Hopkins University and obtained her MSE in mechanical engineering in 2016. She is currently a Ph.D. student working with Professor Hemker, and her doctoral research is focused on small-scale mechanical testing and the development of Metal MEMS alloys. The majority of MEMS devices still rely on silicon, but the use of MEMS in extreme environments will require new materials with high strength, density, electrical conductivity, dimensional stability, and microscale manufacturability. MEMS materials with this suite of properties are currently unavailable, but nanotwinned NiMoW films show great promise. Gianna is tailoring the mechanical and thermal response of nanotwinned NiMoW thin films, and her collaborations at the Singh Center are focused on fabricating free-standing micro-cantilever arrays that can be used to demonstrate the dimensional stability of NiMoW MEMS devices.


Dr. Ryan Wade
Senior Associate
Polymer Science & Materials Chemistry

Ryan Wade is a Senior Associate in the Polymer Science and Materials Chemistry practice at Exponent, an engineering and scientific consulting company. His areas of focus include polymer synthesis and chemical characterization, polymer rheology, hydrogel development, micro and nano-particle formulation, polymeric biodegradation, biocompatibility of materials, and drug delivery. Prior to working at Exponent, he completed his Ph.D. in Materials Science and Engineering at the University of Pennsylvania as a National Science Foundation Graduate Research Fellow while developing multiple hydrogel systems to control cell-material interactions by synthetic design of polymeric materials. He previously worked for Merck and Co. as a Manufacturing Supervisor for bulk protein purification of the Gardasil® vaccine, and completed his bachelor’s degree in Materials Science and Engineering at Johns Hopkins University.


Dr. George Patrick Watson (Pat)
Director of User Programs
Singh Center for Nanotechnology

Pat Watson is the Director of User Programs at the Singh Center for Nanotechnology at the University of Pennsylvania. Pat has over 25 years experience in electronic materials, micro-electromechanical systems, and nanofabrication research and has worked in technical staff and management roles at Bell Laboratories, Princeton University, and 2 startups. He has recently helped to create and implement a graduate level nanofabrication and characterization lab course at Penn.


Dr. Eric Wickstrom
Professor of Biochemistry & Molecular Biology
Thomas Jefferson University

Dr. Wickstrom has published over 180 papers, reviews, and chapters, as well as 7 patents and two books, on molecular design, nucleic acid structure, gene function, mRNA translation, protein structure, and cell biology. Dr. Wickstrom and his colleagues design, model, synthesize, purify, analyze, and test RNA analogs for use as diagnostics and therapeutics against pathogenic RNAs.

The American Association for the Advancement of Science recognized the research program of Dr. Wickstrom inducting him as a Fellow. Similarly, the National Academy of Inventors has inducted Dr. Wickstrom as a Member. The Hip Society conferred upon him a Frank Stinchfield Award for “Titanium Surface with Biologic Activity Against Infection”. The European Molecular Biology Organization, the Max Planck Institut für Molekulare Genetik, and the US National Cancer Institute have all selected Dr. Wickstrom to be a Visiting Fellow.

As PI or Co-PI of federal and foundation grants, including an SBIR grant, he pioneered complementary oligonucleotide inhibition of oncogene mRNA translation in cancer cells [1] and animal tumors [2], plus whole body radioimaging of oncogene mRNA overexpression [3].

Short peptide nucleic acid (PNA) sequences can hybridize with single mismatch specificity under cytoplasmic conditions [3], without side effects. Peptide ligands of overexpressed receptors internalize cargos conjugated to the ligands. Dr. Wickstrom and his colleagues designed, modeled, synthesized, purified, analyzed, and tested complementary RNA analog hybridization agents that endocytose into the cytoplasm of cells to inhibit oncogene mRNA translation in cancer cells [2] and tumors [3], targeting the oncogenes MYCC, HRAS, and CCND1.

Similarly, Dr. Wickstrom and his colleagues created radionuclide-chelator-peptide nucleic acid (PNA)-IGF1 tetrapeptide hybridization agents that endocytosed into cells via IGF1R and enabled imaging of the mRNAs of oncogenes CCND1, MYCC, KRAS2, and HER2, by 99mTc SPECT, 111In SPECT, or 64Cu PET [3]. Chelation of Gd(III) in lieu of a radiometal enabled us to visualize activated KRAS2 mRNA by MRI.

To assist our Orthopedic Surgery colleagues, Dr. Wickstrom and his colleagues designed, modeled, synthesized, analyzed, and tested titanium alloy permanently bonded to vancomycin or daptomycin to preclude Staphylococcus infections of orthopedic implants [4].

Dr. Wickstrom and his colleagues currently design novel genetic medicines to slow the growth of triple negative breast cancer cells, induce immune cell attack, and extend survival. They discovered a new principle in the genetic code of triple negative breast cancer cells [5]. Dr. Wickstrom and his colleagues are optimizing a particular molecular design for the triple negative breast cancer medicine that works best in orthotopic triple negative breast cancer xenografts. They will develop that genetic medicine for therapy in humans. The underlying principle is that short RNA derivatives can hybridize to RNA with single mismatch specificity under cytoplasmic conditions, following receptor-mediated endocytosis.

In September, he will give an invited lecture on “microRNA Blockade in Triple Negative Breast Cancer Cells and Non-Small Cell Lung Cancer Cells without Passenger Strand Side Effects” at the 7th Cambridge Symposium on Nucleic Acids at Queens’ College in Cambridge, England. In summary, Dr. Wickstrom has a track record for innovation and execution of novel ideas in disease mechanisms.

Dr. Douglas Yates
Director, Nanoscale Characterization Facility
Singh Center for Nanotechnology

Doug Yates is the director of the Nanoscale Characterization Facility, one of three core facilities in the Singh Center for Nanotechnology at the University of Pennsylvania.  Doug, a Ph.D. level scientist, has over 27 years experience in materials characterization and management of analytical facilities.  His areas of expertise include scanning and transmission electron microscopy, X-ray diffraction, and ion scattering including Rutherford backscattered spectrometry and forward recoil spectrometry.  Most recently Doug has assisted with the selection and acquisition of three new atomic-level transmission electron microscopes for the Singh Center and has assisted with the infrastructure design needed to optimize state-of-the-art instruments of this kind.


Dr. Jeffery D. Zahn
Associate Professor, Biomedical Engineering
Rutgers University

Jeffrey D. Zahn is an associate professor of Biomedical Engineering at Rutgers, The State University of New Jersey. He graduated from the Massachusetts Institute of Technology, in 1995, with a Bachelor of Science degree in Chemical Engineering and a minor in Biology. He received his doctorate from the Joint UCSF-UC Berkeley Graduate Group in Bioengineering in 2001. Dr. Zahn’s research focuses around the development of microfluidic and BioMEMS devices for point of care clinical diagnostics and health management. Since receiving tenure, Dr. Zahn’s research combines analytical and numerical modeling of microscale phenomena with device design, fabrication, and testing of microfluidic components in an adaptive and iterative process for device optimization. Dr. Zahn’s current research projects include: the development of a ‘smart’ electroporation microdevice to improve cell transformation efficiency while preserving viability in limited cell populations, neural cell culture platforms creating mini-neurocircuits, multielectrode arrays and flexible cortical neural probes to reduce tissue response and gliosis to preserve recording fidelity. Dr. Zahn has been supported by the NIH, NSF, and New Jersey Commission on Spinal Cord Research (NJCSCR) as well as a recipient of a Wallace H. Coulter Foundation Early Career Translational Research in Biomedical Engineering award.

Yuping Zeng, Electrical & Computer Engineering

Dr. Yuping Zeng
Assistant Professor, Electrical & Computer Engineering
University of Delaware

Dr. Yuping Zeng is currently an assistant professor in University of Delaware.  She has been working on various projects on III-V compound semiconductor electron devices, such as InAs Tunneling Field Effect Transistors (TFETs), Metal Oxide Semiconductor Field Effect Transistors (MOSFETs), Fin Field Effect Transistors (FinFETs). She received her PhD degree in Swiss Federal Institute of Technology in 2011. During her PhD study, she worked on optimizations of design and fabrication process of high speed InP/GaAsSb double heterojunction bipolar transistors (DHBTs) under Prof. Colombo Bolognesi. She obtained her Master degree in National University of Singapore where her main research was on nanoscale material process and characterizations. She is one of the 20 gift-young students who were selected to Jilin University at the age of 15 in 1994 for a gift-young university program in China and obtained her Bachelor’s degree when she was less than 19. Several facets of her research activity are reflected in 30 journal papers and 15 international conference papers. Dr. Zeng is a recipient of the 2009 Chinese Government Award for Outstanding Self-financed Students Abroad. Her research interests are continued on advanced devices and systems for low power applications and high performance applications by innovations in device design, material design and fabrication technology.